
Measurement of IP forwarding performance on
complex computer architectures

Olof Hagsand
KTH

Jens Laas
Uppsala Univ

Robert Olsson
Uppsala Univ / KTH

Bengt Gorden
KTH

Abstract—Open-source routers on new PC hardware allows
for forwarding speeds of 10Gb/s and above. We present de-
tailed performance measurements using Linux on two complex
PC hardware platforms. Both platforms use PCIe gen2, dual
I/O bridges and have support for non-uniform memory access
(NUMA). The AMD platform uses four processors equipped with
eight cores and four nodes of local memory. The Intel platform
has two quad-core CPUs each with local memory.

Packets being forwarded through a PC-based router can be
separated into three steps: receive-dma, lookup, and transmit-
dma. Each step was studied individually. In particular, we
studied how varying the CPU core and memory node effects
the forwarding speeds.

Our results show a large performance dependency of selecting
CPU cores and memory nodes. In particular, DMA works best
with memory nodes closest to the I/O bridge where the interface
card is connected. Correspondingly, CPU access is most efficient
on local memory. Consequently, choosing CPU core and memory
nodes badly leads to a significant performance decrease.

I. INTRODUCTION

Although the first IP routers were software-based, the for-
warding in modern commercial routers are primarily hardware-
based, containing applications specific circuits (ASICs), high
performance switching backplanes(e.g. cross-bars) and ad-
vanced memory systems (including TCAMs). This enables
current routers to perform wire-speed routing up to Terabit
speeds. The commercial high-end routers of today have little
in common with a standard desktop PC.

However, the complexity of the forwarding and routing
protocols have increased resulting in more hardware, and more
complex software modules, up to a point where hardware cost,
power consumption and protocol complexity are important
limiting factors of network deployment.

Simultaneously, router development on general-purpose
computer platforms (such as PC’s) have also advanced. In par-
ticular, general purpose hardware combined with open-source
software [6], [7], [8] have the advantages of offering a low-
cost and flexible solution that is tractable for several niches of
networking deployment. Such a platform is inexpensive since
it uses off-the-shelf commodity hardware, and flexible in the
sense of its openness of the source software and a potentially
large development community.

However, many previous efforts have been hindered by
performance requirements. While it has been possible to
deploy open source routers as packet filterers on medium-
bandwidth networks it has been difficult to connect them to
high-bandwidth up-links.

In earlier work it has been shown [2] how multi-core CPU
architectures with NUMA and parallel PCIe buses combined
with 10G Ethernet interface cards could be used to speed
up packet forwarding of a Linux-based router. In this work
we explore the combinations of memory node, CPU-core and
I/O bus configurations. Although analysis have been made in
the server domain [9], the analysis for packet forwarding is a
challenging task involving many degrees of fredoom.

Forwarding in software on a PC-based platform is done by
a combination of DMA and CPU processing. The CPU sets up
DMA between interface cards and main memory, investigates
the packet header and performs lookup, filtering, etc.

However, when multiple, parallell cores are used with
NUMA and hardware classification, this process is more
complicated. A CPU core allocates memory from a selected
memory node. This memory is used for DMA so that interface
cards can push packets directly to memory on a specific
memory node. By using hardware classifiers, a card can use
several queues to transfer data to several locations in parallel.

In this work, we investigate the performance when using
different combinations of memory nodes, CPU cores and I/O
bridges when performing individual tasks of forwarding. We
identified and isolated some tasks and studied each separately.
By this, we hope to gain a better understanding of the for-
warding behavior and thus be able to utilize the new hardware
platforms better in the future.

II. EXPERIMENTAL PLATFORM

The experiments used a release of Bifrost [6] 6.1 using the
LC-trie forwarding engine [4]. The network interface cards
were Intel 10 Gigabit based on the Intel 82599 chipset [1].
The cards have multiple RX and TX queues with multiple
interrupt and DMA channels.

The network interface cards have hardware classifiers that
compute a hash-value of the packet header. The hash-value is
used to select receive queue, and thus selects which memory
location the receive DMA transfers the packet to. Load-
balancing between CPUs therefore require the traffic header
to consist of several flows, enough to make the hash-function
evenly distribute the traffic over the different CPUs.

A. Intel platform

The motherboard of the Intel platform is a TYAN 7025 with
two physical Quad-Core XEON Processors E5620 at 2.4 GHz,
each with 4 cores plus 4 hyper-threading cores giving a total

CPU0
4 cores +

4 hyperthreads

CPU1
4 cores +

4 hyperthreads

QPI
DDR3

DDR3

DDR3 DDR3

DDR3

DDR3

I/O Bridge 0 I/O Bridge 1

PCI-E Gen.2 x16

PCI-E Gen.2 x16

PCI-E Gen.2 x4

PCI-E Gen.2 x16

PCI-E Gen.2 x16

PCI-E Gen.2 x8

More I/O devices

QPI

QPI QPI
Memnode 1Memnode 0

Figure 1. Block diagram of the Intel XEON platform.

CPU0
8 cores

CPU1
8 cores

HT
Memnode 1

Memnode 0 Memnode 2

Memnode 3

I/O
Bridge 0

I/O
Bridge 1

PCI-E Gen.2 x16

PCI-E Gen.2 x8

PCI-E Gen.2 x16

PCI-E Gen.2 x8g

PCI-E Gen.2 x8

More I/O devices

HT HT

CPU2
8 cores

CPU3
8 cores

HT
Memnode 5

Memnode 4 Memnode 6

Memnode 7

HT HTHT

Figure 2. Block diagram of the AMD Opteron platform.

of 16 CPU-cores, see Figure 1. The hyper-threads are seen as
individual cores by the operating system.

Each physical CPU has has its own memory node with three
memory channels, thus forming a simple NUMA architecture.
Internal buses are QPI.

B. AMD platform

The motherboard of the second platform is a SuperMicro
H8QG6i with four physical eight-core AMD Opteron Proces-
sor 6140 “Magny-Cours” with 2.6 GHz giving a total of 32
CPU-cores. In fact, these eight-core processors are in fact
composed of two four-core dies, making each single CPU
a two-processor system with four cores each. Consequently,
each such CPU has two memory nodes. From a logical point
of view, the system is therefore an eight processor system

with four cores in each CPU, see Figure 2. We refer to such
a four-core system as a ’quad’.

The AMD internal cross-connect structure is schematically
shown in the block diagram.

C. Tools
We used several existing tools, and developed some of our

own. We also made modifications to the Linux kernel.
The traffic was generated using a modified version of

pktgen [3]. In particular, by carefully selecting flows we
could control which RX queue was used by the hash-based
classification on the interface cards [5], and thus control which
CPU core received the traffic.

We developed the tool eth_affinity to control inter-
rupts, device queues, and CPU cores, while user space CPU
core and memory nodes were controlled by the taskset and
numactl commands.

CPU memory latency and bandwidth tests were made using
two tools from the lmbench package: lat_mem_rd to
measure memory latency and bw_mem to measure memory
bandwidth.

III. RESULTS

A simple setup was used where two PC routers generated
and received traffic [2].

The experiments were divided into three basic steps of
packet forwarding on a software-based router:

• RXDMA Receive DMA performance.
• MEMCPU Memory node bandwidth and latency by CPU

read access from different CPU cores.
• TXDMA Transmit DMA performance.
The experiments were devised as follows:
• Single. In these experiments, the performance of the com-

bination of single core and memory node was measured.
• Multiple. In some experiments, several cores were used.

In this cases, local memory node was used.
In all experiments, a single 10Gb/s interface card was

attached to the x8 PCIe slot on I/O bridge 0. Therefore, the
card can be said to be ’closest’ to CPU0 in both cases.

A. RXDMA
In the receive DMA case, the packet generator sent different

flows in order to control which CPU processed the data using
the technique described in Section II-C. The packet length was
64 bytes.

Packets were received and classified by the interface card
on the router and transmitted to local memory using DMA.
The associated CPU processed the packets but simply dropped
them before lookup and forwarding was made using a kernel
patch in ip_rcv.

1) RXDMA on single cores, Intel: In the first experiment,
single CPU cores and memory nodes were used to receive
traffic on the Intel platform. We observed that the performance
of memory node 0 was around 2.2Mpps, while only 2.0 Mpps
for memory node 1, independent of CPU core. The interface
card was attached via I/O bridge 0 which is closer to memory
node 0 in QPI hops.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35

M
pp

s

core#

AMD 32 core 8 memory nodes

m0
m1
m2
m3
m4
m5
m6
m7

Figure 3. RXDMA single AMD: Packets per second of eight memory nodes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

M
pp

s

Cores

AMD/Intel cores vs PPS

AMD
Intel

Figure 4. RXDMA multi: Packets per second on Intel and AMD when several
cores were used in parallell.

2) RXDMA on single cores, AMD: The same experiment
was repeated for the AMD platform. As can be seen in
Figure 3, the performance of memory node 0 is higher than
the others, around 2.3Mpps. One can also see that memory
nodes 3, 5 and 7 have a lower performance than the others,
and memory node 1 has slightly better than 2, 4 and 6.

The AMD is more intricate than the Intel platform, but the
main result is the same, that the memory node closest to the
active I/O bridge has the best performance. The other results
can be explained if one sees the AMD system as an eight CPU
system, where the distance from cores 0-3 to memory nodes
1, 2, 4, and 6 is distance one, and distance to memory nodes
3, 5 and 7 is distance two.

3) RXDMA on multiple cores: In the next experiment, flows
were tuned so that several cores received traffic in parallel.
CPU cores used only local memory. It can be seen in Figure 4
that the performance of the Intel platform increases to over
9 Mpps when 8 cores were used, while the AMD levels off at

 70

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 0 2 4 6 8 10 12 14 16

"110201.lat_mem_rd_128_256.n0" using 2:4
"110201.lat_mem_rd_128_256.n1" using 2:4

Figure 5. MEMCPU single Intel: Memory latency in ns as a function of
CPU cores.

3.4 Mpps. Although the performance of a single AMD core is
better, the Intel scale better with the same driver and software
being run in the two cases.

When studying software profiles we could see a software
spinlock having much higher contention in the AMD profiles.
This needs to be further analyzed but could possibly indicate
that the cost of cache coherency is higher on AMD with its
eight memory nodes compared with Intel’s two.

B. MEMCPU, Memory latency and memory latencies

The second class of experiments illustrates the case where
packets reside in memory (RAM), and a single CPU core
accesses the packet header to make IP lookup, filtering,
queueing, etc.

A CPU core loads a packet from memory. If this memory is
not local to the core due to NUMA, this initial load (and store)
may have varying latency and bandwidth. After the initial load,
the processing of the packet header is most probably made in
the L1 cache.

1) MEMCPU Intel latency: Memory latency for the Intel
platform is shown in Figure 5 for the two memory nodes. The
results show that local memory is faster (e.g., 74ns) for cores
in CPU 0, while slower when accessing the other memory
node (e.g., 118 ns).

The plots are asymmetrical for the two memory nodes. This
was due to slightly different DIMMs in the memory nodes.

One can also observe the hyper-threads (cores 8-15), which
behave in a similar way to the real cores (0-7).

2) MEMCPU AMD latency: Figure 6 shows the memory
latency for the first three memory nodes in the AMD system.
There are four levels in the graph: around 47ns, 90ns, 95ns
and 132ns. These illustrate: local memory node (47ns); same
CPU other quad (90ns); remote CPU same quad (95ns);
remote CPU other quad (132ns). This illustrates the internal
HT layout of the AMD architecture.

The AMD platform was further investigated in terms of
memory bandwidth, the results are similar to the latency

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 5 10 15 20 25 30 35

"110201-AMD6140.lat_mem_rd_128_256.n0" using 2:4
"110201-AMD6140.lat_mem_rd_128_256.n1" using 2:4
"110201-AMD6140.lat_mem_rd_128_256.n2" using 2:4

Figure 6. MEMCPU single AMD: Memory latency in ns as a function of
CPU cores (first three memnodes).

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 4.6e+06

 0 5 10 15 20 25 30 35

"new/m0" using 3:6
"new/m1" using 3:6
"new/m2" using 3:6
"new/m3" using 3:6
"new/m4" using 3:6
"new/m5" using 3:6
"new/m5" using 3:6
"new/m6" using 3:6
"new/m7" using 3:6

Figure 7. TXDMA single AMD: Packets per second of eight memory nodes.

measurements. In particular, local memory performs more than
three times better than the most ’remote’ memory.

C. Transmit DMA

When studying transmit DMA, packets were generated from
one CPU core at a time using different memory nodes, and
the packet-per-second performance was measured.

1) TXDMA AMD: The TXDMA measurement for AMD
is shown in Figure 7 and shows a somewhat different be-
haviour than RXDMA. Better performance can be observed
for memory node 0, but only for the first quad of CPU0. A
dependency of CPU core is also evident which was not present
for RXDMA. The same pattern visible in the MEMCPU case
is also seen here: the number of inter-CPU hops is visible
in the performance graphs, and performance is better for the
CPU closest to the I/O bridge where the interface card was
attached.

IV. CONCLUSIONS AND FUTURE WORK

We have made detailed performance measurements related
to packet forwarding on two complex PC platforms. We have
studied DMA and memory behaviour when using different
CPU cores and memory nodes.

Our results show the significance of selecting a good
combination of CPU cores and memory nodes. Essentially,
memory nodes should be close to the corresponding I/O bridge
or CPU performing the task. At the same time however, high
forwarding speeds require parallelized processing by using all
CPU cores.

Further, the outgoing I/O bridge may not be known until
the lookup has been made which means that TXDMA may
not always be made locally.

This leads to an optimizing problem where our results
provide some guidance in how the forwarding load should
be balanced among processors and memory nodes within a
given architecture.

Several of the results presented in this paper are preliminary
and we do not yet know where the bottlenecks in each case
are. The Linux networking community have done a good job
in making the forwarding code scale with the number of
processors, but the software is still a limiting factor in some
cases.

We have studied RXDMA, TXDMA and memory latency
and bandwidth separately. We will continue the study by
combining the individual measurements in a complete paral-
lelized forwarding. Optimal forwarding performance may lead
to trade-offs between parallel processing and location as shown
by these studies.

Acknowledgements

This paper is a result of a study sponsored by .SE, Stiftelsen
for Internetinfrastruktur. Interface boards were provided by
Intel; CPUs by AMD. Uppsala university and KTH provided
experimental networking infrastructures.

REFERENCES

[1] Intel 82599 10GbE Controller Datasheet, Revision 2.4, Intel Corpora-
tion, September, 2010.

[2] O Hagsand, R.Olsson., B. Gorden Towards 10Gb/s open source routing.
In Proceedings of the Linux Symposium, Hamburg, October, 2008

[3] R.Olsson. Pktgen the linux packet generator. In Proceedings of the Linux
Symposium, Ottawa, Canada, volume 2, pages 11 - 24, 2005.

[4] S. Nilsson, and G. Karlsson, Fast address look-up for Internet routers, In
Proc. IFIP 4th International Conference on Broadband Communications,
pp. 11-22, 1998.

[5] Microsoft Corporation, "Scalable Networking: Eliminating the Receive
Processing Bottleneck-Introducing RSS", WinHEC 2004 Version - April
14, 2004

[6] R. Olsson, H. Wassen, E. Pedersen, "Open Source Routing in High-
Speed Production Use", Linux Kongress, October 2008.

[7] Kunihiro Ishiguro, et al, "Quagga, A routing software package for
TCP/IP networks", July 2006

[8] M. Handley, E. Kohler, A. Ghosh, O. Hodson, P. Radoslavov, "Designing
Extensible IP Router Software", in Proc of the 2nd USENIX Symposium
on Networked Systems Design and Implementation (NSDI) 2005.

[9] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M Kaashoek, R.
Morris, N. Zeldovich, "An analysis of linux scalability to many cores",
in In Proc of the 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’10), Vancouver, Canada, October 2010.

